Isolation and characterization of Ni mobilizing PGPB from serpentine soils and their potential in promoting plant growth and Ni accumulation by Brassica spp.
نویسندگان
چکیده
The study was undertaken to assess the effects of Ni mobilizing bacteria on the plant growth and the uptake of Ni by Brassica juncea and Brassica oxyrrhina. Among a collection of Ni resistant bacterial strains isolated from the non-rhizosphere and rhizosphere soils of Alyssum serpyllifolium and Astragalus incanus at a serpentine site in Bragança, north-east of Portugal, nine strains were selected based on their ability to solubilize Ni in soil. Further assessment on plant growth-promoting parameters revealed the intrinsic ability of the Ni mobilizing strains to produce indole-3-acetic acid (IAA), siderophores, utilize 1-aminocyclopropane-1-carboxylic acid (ACC) as the sole N source and solubilize insoluble phosphate. All of the strains tested positive for IAA production and phosphate solubilization. In addition, all the strains, except SRS5 exhibited significant levels of siderophore production. Besides, five isolates showed positive for ACC deaminase activity. In pot experiments, inoculation of plants with Ni mobilizing strains increased the biomass of both B. juncea and B. oxyrrhina. Among the strains, Pseudomonas sp. SRI2, Psychrobacter sp. SRS8 and Bacillus sp. SN9 showed maximum increase in the biomass of the test plants. In addition, the strain SN9 significantly increased the Ni concentration in the root and shoot tissues of B. juncea and B. oxyrrhina. Further, a significantly positive correlation was observed between the bacterial Ni mobilization in soil and the total Ni uptake in both plant species. The findings, therefore, revealed that inoculation of Ni mobilizing plant growth-promoting bacterial strain SN9 increases the efficiency of phytoextraction directly by enhancing Ni accumulation in plant tissues and indirectly by promoting the shoot and root biomass of B. juncea and B. oxyrrhina.
منابع مشابه
Improvement of plant growth and nickel uptake by nickel resistant-plant-growth promoting bacteria.
In this study, among a collection of Ni-resistant bacterial strains isolated from the rhizosphere of Alyssum serpyllifolium and Phleum phleoides grown on serpentine soil, five plant growth-promoting bacteria (PGPB) were selected based on their ability to utilize 1-aminocyclopropane-1-carboxylate (ACC) as the sole N source and promote seedling growth. All of the strains tested positive for indol...
متن کاملSerpentine bacteria influence metal translocation and bioconcentration of Brassica juncea and Ricinus communis grown in multi-metal polluted soils
The aim of this study was to assess the effects of inoculation of rhizosphere or endophytic bacteria (Psychrobacter sp. SRS8 and Pseudomonas sp. A3R3, respectively) isolated from a serpentine environment on the plant growth and the translocation and accumulation of Ni, Zn, and Fe by Brassica juncea and Ricinus communis on a multi-metal polluted serpentine soil (SS). Field collected SS was dilut...
متن کاملبررسی نقش نیکل در کاهش اثرات تنش خشکی گیاه Fortuynia garcinii
Serpentine soils are dry and contain rather high levels of nickel (Ni).To obtain a better understanding of drought tolerance by Ni in serpentine plants, a hydroponic trial was designed to compare the effects of Ni on growth factors, Ni uptake or translocation and some physiological parameters in the serpentine plant, Fortuynia garcinii (Burm.f.), under PEG simulated drought stress (3 levels). A...
متن کاملImprovement of Ni phytostabilization by inoculation of Ni resistant Bacillus megaterium SR28C.
The use of metal tolerant plants for the phytostabilization of metal contaminated soil is an area of extensive research and development. In this study the effects of inoculation of Ni-resistant bacterial strains on phytostabilization potential of various plants, including Brassica juncea, Luffa cylindrica and Sorghum halepense, were studied. A Ni-resistant bacterial strain SR28C was isolated fr...
متن کاملInfluence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals.
The metal resistant-plant growth-promoting bacterial (PGPB) strains PsM6 and PjM15 isolated from a serpentine soil were characterized as Pseudomonas sp. and Pseudomonas jessenii, respectively, on the basis of their morphological, physiological, biochemical characteristics and 16S rDNA sequences. Assessment of plant growth-promoting parameters revealed the intrinsic ability of the strains for th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemosphere
دوره 75 6 شماره
صفحات -
تاریخ انتشار 2009